
SOS 13
System Software Panel

Barney Maccabe

March 11, 2009

(We don’t suck as bad as memory)



 Managed by UT-Battelle
for the Department of Energy

Panelists

• Pete Beckman, ANL
• Ron Brightwell, SNL
• Christine Morin, INRIA
• Stephen Scott, ORNL



 Managed by UT-Battelle
for the Department of Energy

System Software
• Basic I/O System

– provides a basic abstraction of the I/O devices

• Operating system
– provides abstractions and mediates resource 

conflicts

• Runtime system
– software needed to support a programming model

• Virtualization
– resource abstraction, typically encompasses 

multiplicity (e.g., processes, threads, windows)
– multiplicity enables deferred management 

decisions



 Managed by UT-Battelle
for the Department of Energy

Abstractions

• In the end, it’s about building the right set of 
abstractions

• Commodity abstractions
– processes, demand paged virtual memory, 

dynamic linked libraries, signals, map reduce, ...

• Abstractions used in science
– MPI, global arrays, ...

• Scalable abstractions
Scalable 

abstractions

Commodity 
abstractions

Abstractions
used in science



 Managed by UT-Battelle
for the Department of Energy

Panel questions
• Transparency (exposing resources) versus 

Simplicity (masking complexity): Are these in 
conflict? How much overhead is too much?

• System software lifecycle: This is a niche market, 
how do we sustain system software? Why is system 
software different than HPC applications?

• Fault tolerance/resilience: is this an OS, runtime, or 
application issue?

• When do we get to stop supporting MPI? From a 
system software perspective, what is the biggest 
challenge in supporting MPI?

• For which questions (not limited to the ones
above) is virtualization not the right answer?


